math
Index
- func Abs(x float64) float64
- func Acos(x float64) float64
- func Acosh(x float64) float64
- func Asin(x float64) float64
- func Asinh(x float64) float64
- func Atan(x float64) float64
- func Atan2(y, x float64) float64
- func Atanh(x float64) float64
- func Cbrt(x float64) float64
- func Ceil(x float64) float64
- func Copysign(f, sign float64) float64
- func Cos(x float64) float64
- func Cosh(x float64) float64
- func Dim(x, y float64) float64
- func Erf(x float64) float64
- func Erfc(x float64) float64
- func Exp(x float64) float64
- func Exp2(x float64) float64
- func Expm1(x float64) float64
- func Float32bits(f float32) uint32
- func Float32frombits(b uint32) float32
- func Float64bits(f float64) uint64
- func Float64frombits(b uint64) float64
- func Floor(x float64) float64
- func Frexp(f float64) (frac float64, exp int)
- func Gamma(x float64) float64
- func Hypot(p, q float64) float64
- func Ilogb(x float64) int
- func Inf(sign int) float64
- func IsInf(f float64, sign int) bool
- func IsNaN(f float64) (is bool)
- func J0(x float64) float64
- func J1(x float64) float64
- func Jn(n int, x float64) float64
- func Ldexp(frac float64, exp int) float64
- func Lgamma(x float64) (lgamma float64, sign int)
- func Log(x float64) float64
- func Log10(x float64) float64
- func Log1p(x float64) float64
- func Log2(x float64) float64
- func Logb(x float64) float64
- func Max(x, y float64) float64
- func Min(x, y float64) float64
- func Mod(x, y float64) float64
- func Modf(f float64) (int float64, frac float64)
- func NaN() float64
- func Nextafter(x, y float64) (r float64)
- func Pow(x, y float64) float64
- func Pow10(n int) float64
- func Remainder(x, y float64) float64
- func Signbit(x float64) bool
- func Sin(x float64) float64
- func Sincos(x float64) (sin, cos float64)
- func Sinh(x float64) float64
- func Sqrt(x float64) float64
- func Tan(x float64) float64
- func Tanh(x float64) float64
- func Trunc(x float64) float64
- func Y0(x float64) float64
- func Y1(x float64) float64
- func Yn(n int, x float64) float64
Functions
func Abs
1func Abs(x float64) float64
Abs returns the absolute value of x.
Special cases are:
Abs(±Inf) = +Inf
Abs(NaN) = NaN
1x := math.Abs(-2)
2fmt.Printf("%.1f\n", x)
3
4y := math.Abs(2)
5fmt.Printf("%.1f\n", y)
Output
2.0 2.0
func Acos
1func Acos(x float64) float64
Acos returns the arccosine, in radians, of x.
Special case is:
Acos(x) = NaN if x < -1 or x > 1
1fmt.Printf("%.2f", math.Acos(1))
Output
0.00
func Acosh
1func Acosh(x float64) float64
Acosh returns the inverse hyperbolic cosine of x.
Special cases are:
Acosh(+Inf) = +Inf
Acosh(x) = NaN if x < 1
Acosh(NaN) = NaN
1fmt.Printf("%.2f", math.Acosh(1))
Output
0.00
func Asin
1func Asin(x float64) float64
Asin returns the arcsine, in radians, of x.
Special cases are:
Asin(±0) = ±0
Asin(x) = NaN if x < -1 or x > 1
1fmt.Printf("%.2f", math.Asin(0))
Output
0.00
func Asinh
1func Asinh(x float64) float64
Asinh returns the inverse hyperbolic sine of x.
Special cases are:
Asinh(±0) = ±0
Asinh(±Inf) = ±Inf
Asinh(NaN) = NaN
1fmt.Printf("%.2f", math.Asinh(0))
Output
0.00
func Atan
1func Atan(x float64) float64
Atan returns the arctangent, in radians, of x.
Special cases are:
Atan(±0) = ±0
Atan(±Inf) = ±Pi/2
1fmt.Printf("%.2f", math.Atan(0))
Output
0.00
func Atan2
1func Atan2(y, x float64) float64
Atan2 returns the arc tangent of y/x, using the signs of the two to determine the quadrant of the return value.
Special cases are (in order):
Atan2(y, NaN) = NaN
Atan2(NaN, x) = NaN
Atan2(+0, x>=0) = +0
Atan2(-0, x>=0) = -0
Atan2(+0, x<=-0) = +Pi
Atan2(-0, x<=-0) = -Pi
Atan2(y>0, 0) = +Pi/2
Atan2(y<0, 0) = -Pi/2
Atan2(+Inf, +Inf) = +Pi/4
Atan2(-Inf, +Inf) = -Pi/4
Atan2(+Inf, -Inf) = 3Pi/4
Atan2(-Inf, -Inf) = -3Pi/4
Atan2(y, +Inf) = 0
Atan2(y>0, -Inf) = +Pi
Atan2(y<0, -Inf) = -Pi
Atan2(+Inf, x) = +Pi/2
Atan2(-Inf, x) = -Pi/2
1fmt.Printf("%.2f", math.Atan2(0, 0))
Output
0.00
func Atanh
1func Atanh(x float64) float64
Atanh returns the inverse hyperbolic tangent of x.
Special cases are:
Atanh(1) = +Inf
Atanh(±0) = ±0
Atanh(-1) = -Inf
Atanh(x) = NaN if x < -1 or x > 1
Atanh(NaN) = NaN
1fmt.Printf("%.2f", math.Atanh(0))
Output
0.00
func Cbrt
1func Cbrt(x float64) float64
Cbrt returns the cube root of x.
Special cases are:
Cbrt(±0) = ±0
Cbrt(±Inf) = ±Inf
Cbrt(NaN) = NaN
1fmt.Printf("%.2f\n", math.Cbrt(8))
2fmt.Printf("%.2f\n", math.Cbrt(27))
Output
2.00 3.00
func Ceil
1func Ceil(x float64) float64
Ceil returns the least integer value greater than or equal to x.
Special cases are:
Ceil(±0) = ±0
Ceil(±Inf) = ±Inf
Ceil(NaN) = NaN
1c := math.Ceil(1.49)
2fmt.Printf("%.1f", c)
Output
2.0
func Copysign
1func Copysign(f, sign float64) float64
Copysign returns a value with the magnitude of f and the sign of sign.
1fmt.Printf("%.2f", math.Copysign(3.2, -1))
Output
-3.20
func Cos
1func Cos(x float64) float64
Cos returns the cosine of the radian argument x.
Special cases are:
Cos(±Inf) = NaN
Cos(NaN) = NaN
1fmt.Printf("%.2f", math.Cos(math.Pi/2))
Output
0.00
func Cosh
1func Cosh(x float64) float64
Cosh returns the hyperbolic cosine of x.
Special cases are:
Cosh(±0) = 1
Cosh(±Inf) = +Inf
Cosh(NaN) = NaN
1fmt.Printf("%.2f", math.Cosh(0))
Output
1.00
func Dim
1func Dim(x, y float64) float64
Dim returns the maximum of x-y or 0.
Special cases are:
Dim(+Inf, +Inf) = NaN
Dim(-Inf, -Inf) = NaN
Dim(x, NaN) = Dim(NaN, x) = NaN
1fmt.Printf("%.2f\n", math.Dim(4, -2))
2fmt.Printf("%.2f\n", math.Dim(-4, 2))
Output
6.00 0.00
func Erf
1func Erf(x float64) float64
Erf returns the error function of x.
Special cases are:
Erf(+Inf) = 1
Erf(-Inf) = -1
Erf(NaN) = NaN
func Erfc
1func Erfc(x float64) float64
Erfc returns the complementary error function of x.
Special cases are:
Erfc(+Inf) = 0
Erfc(-Inf) = 2
Erfc(NaN) = NaN
func Exp
1func Exp(x float64) float64
Exp returns e**x, the base-e exponential of x.
Special cases are:
Exp(+Inf) = +Inf
Exp(NaN) = NaN
Very large values overflow to 0 or +Inf. Very small values underflow to 1.
1fmt.Printf("%.2f\n", math.Exp(1))
2fmt.Printf("%.2f\n", math.Exp(2))
3fmt.Printf("%.2f\n", math.Exp(-1))
Output
2.72 7.39 0.37
func Exp2
1func Exp2(x float64) float64
Exp2 returns 2**x, the base-2 exponential of x.
Special cases are the same as Exp.
1fmt.Printf("%.2f\n", math.Exp2(1))
2fmt.Printf("%.2f\n", math.Exp2(-3))
Output
2.00 0.12
func Expm1
1func Expm1(x float64) float64
Expm1 returns e**x - 1, the base-e exponential of x minus 1. It is more accurate than Exp(x) - 1 when x is near zero.
Special cases are:
Expm1(+Inf) = +Inf
Expm1(-Inf) = -1
Expm1(NaN) = NaN
Very large values overflow to -1 or +Inf.
1fmt.Printf("%.6f\n", math.Expm1(0.01))
2fmt.Printf("%.6f\n", math.Expm1(-1))
Output
0.010050 -0.632121
func Float32bits
1func Float32bits(f float32) uint32
Float32bits returns the IEEE 754 binary representation of f, with the sign bit of f and the result in the same bit position. Float32bits(Float32frombits(x)) == x.
func Float32frombits
1func Float32frombits(b uint32) float32
Float32frombits returns the floating-point number corresponding to the IEEE 754 binary representation b, with the sign bit of b and the result in the same bit position. Float32frombits(Float32bits(x)) == x.
func Float64bits
1func Float64bits(f float64) uint64
Float64bits returns the IEEE 754 binary representation of f, with the sign bit of f and the result in the same bit position, and Float64bits(Float64frombits(x)) == x.
func Float64frombits
1func Float64frombits(b uint64) float64
Float64frombits returns the floating-point number corresponding to the IEEE 754 binary representation b, with the sign bit of b and the result in the same bit position. Float64frombits(Float64bits(x)) == x.
func Floor
1func Floor(x float64) float64
Floor returns the greatest integer value less than or equal to x.
Special cases are:
Floor(±0) = ±0
Floor(±Inf) = ±Inf
Floor(NaN) = NaN
1c := math.Floor(1.51)
2fmt.Printf("%.1f", c)
Output
1.0
func Frexp
1func Frexp(f float64) (frac float64, exp int)
Frexp breaks f into a normalized fraction and an integral power of two. It returns frac and exp satisfying f == frac × 2**exp, with the absolute value of frac in the interval [½, 1).
Special cases are:
Frexp(±0) = ±0, 0
Frexp(±Inf) = ±Inf, 0
Frexp(NaN) = NaN, 0
func Gamma
1func Gamma(x float64) float64
Gamma returns the Gamma function of x.
Special cases are:
Gamma(+Inf) = +Inf
Gamma(+0) = +Inf
Gamma(-0) = -Inf
Gamma(x) = NaN for integer x < 0
Gamma(-Inf) = NaN
Gamma(NaN) = NaN
func Hypot
1func Hypot(p, q float64) float64
Hypot returns Sqrt(p*p + q*q), taking care to avoid unnecessary overflow and underflow.
Special cases are:
Hypot(±Inf, q) = +Inf
Hypot(p, ±Inf) = +Inf
Hypot(NaN, q) = NaN
Hypot(p, NaN) = NaN
func Ilogb
1func Ilogb(x float64) int
Ilogb returns the binary exponent of x as an integer.
Special cases are:
Ilogb(±Inf) = MaxInt32
Ilogb(0) = MinInt32
Ilogb(NaN) = MaxInt32
func Inf
1func Inf(sign int) float64
Inf returns positive infinity if sign >= 0, negative infinity if sign < 0.
func IsInf
1func IsInf(f float64, sign int) bool
IsInf reports whether f is an infinity, according to sign. If sign > 0, IsInf reports whether f is positive infinity. If sign < 0, IsInf reports whether f is negative infinity. If sign == 0, IsInf reports whether f is either infinity.
func IsNaN
1func IsNaN(f float64) (is bool)
IsNaN reports whether f is an IEEE 754 “not-a-number” value.
func J0
1func J0(x float64) float64
J0 returns the order-zero Bessel function of the first kind.
Special cases are:
J0(±Inf) = 0
J0(0) = 1
J0(NaN) = NaN
func J1
1func J1(x float64) float64
J1 returns the order-one Bessel function of the first kind.
Special cases are:
J1(±Inf) = 0
J1(NaN) = NaN
func Jn
1func Jn(n int, x float64) float64
Jn returns the order-n Bessel function of the first kind.
Special cases are:
Jn(n, ±Inf) = 0
Jn(n, NaN) = NaN
func Ldexp
1func Ldexp(frac float64, exp int) float64
Ldexp is the inverse of Frexp. It returns frac × 2**exp.
Special cases are:
Ldexp(±0, exp) = ±0
Ldexp(±Inf, exp) = ±Inf
Ldexp(NaN, exp) = NaN
func Lgamma
1func Lgamma(x float64) (lgamma float64, sign int)
Lgamma returns the natural logarithm and sign (-1 or +1) of Gamma(x).
Special cases are:
Lgamma(+Inf) = +Inf
Lgamma(0) = +Inf
Lgamma(-integer) = +Inf
Lgamma(-Inf) = -Inf
Lgamma(NaN) = NaN
func Log
1func Log(x float64) float64
Log returns the natural logarithm of x.
Special cases are:
Log(+Inf) = +Inf
Log(0) = -Inf
Log(x < 0) = NaN
Log(NaN) = NaN
1x := math.Log(1)
2fmt.Printf("%.1f\n", x)
3
4y := math.Log(2.7183)
5fmt.Printf("%.1f\n", y)
Output
0.0 1.0
func Log10
1func Log10(x float64) float64
Log10 returns the decimal logarithm of x. The special cases are the same as for Log.
1fmt.Printf("%.1f", math.Log10(100))
Output
2.0
func Log1p
1func Log1p(x float64) float64
Log1p returns the natural logarithm of 1 plus its argument x. It is more accurate than Log(1 + x) when x is near zero.
Special cases are:
Log1p(+Inf) = +Inf
Log1p(±0) = ±0
Log1p(-1) = -Inf
Log1p(x < -1) = NaN
Log1p(NaN) = NaN
func Log2
1func Log2(x float64) float64
Log2 returns the binary logarithm of x. The special cases are the same as for Log.
1fmt.Printf("%.1f", math.Log2(256))
Output
8.0
func Logb
1func Logb(x float64) float64
Logb returns the binary exponent of x.
Special cases are:
Logb(±Inf) = +Inf
Logb(0) = -Inf
Logb(NaN) = NaN
func Max
1func Max(x, y float64) float64
Max returns the larger of x or y.
Special cases are:
Max(x, +Inf) = Max(+Inf, x) = +Inf
Max(x, NaN) = Max(NaN, x) = NaN
Max(+0, ±0) = Max(±0, +0) = +0
Max(-0, -0) = -0
func Min
1func Min(x, y float64) float64
Min returns the smaller of x or y.
Special cases are:
Min(x, -Inf) = Min(-Inf, x) = -Inf
Min(x, NaN) = Min(NaN, x) = NaN
Min(-0, ±0) = Min(±0, -0) = -0
func Mod
1func Mod(x, y float64) float64
Mod returns the floating-point remainder of x/y. The magnitude of the result is less than y and its sign agrees with that of x.
Special cases are:
Mod(±Inf, y) = NaN
Mod(NaN, y) = NaN
Mod(x, 0) = NaN
Mod(x, ±Inf) = x
Mod(x, NaN) = NaN
1c := math.Mod(7, 4)
2fmt.Printf("%.1f", c)
Output
3.0
func Modf
1func Modf(f float64) (int float64, frac float64)
Modf returns integer and fractional floating-point numbers that sum to f. Both values have the same sign as f.
Special cases are:
Modf(±Inf) = ±Inf, NaN
Modf(NaN) = NaN, NaN
1int, frac := math.Modf(3.14)
2fmt.Printf("%.2f, %.2f\n", int, frac)
3
4int, frac = math.Modf(-2.71)
5fmt.Printf("%.2f, %.2f\n", int, frac)
Output
3.00, 0.14 -2.00, -0.71
func Nextafter
1func Nextafter(x, y float64) (r float64)
Nextafter returns the next representable float64 value after x towards y.
Special cases are:
Nextafter(x, x) = x
Nextafter(NaN, y) = NaN
Nextafter(x, NaN) = NaN
func Pow
1func Pow(x, y float64) float64
Pow returns x**y, the base-x exponential of y.
Special cases are (in order):
Pow(x, ±0) = 1 for any x
Pow(1, y) = 1 for any y
Pow(x, 1) = x for any x
Pow(NaN, y) = NaN
Pow(x, NaN) = NaN
Pow(±0, y) = ±Inf for y an odd integer < 0
Pow(±0, -Inf) = +Inf
Pow(±0, +Inf) = +0
Pow(±0, y) = +Inf for finite y < 0 and not an odd integer
Pow(±0, y) = ±0 for y an odd integer > 0
Pow(±0, y) = +0 for finite y > 0 and not an odd integer
Pow(-1, ±Inf) = 1
Pow(x, +Inf) = +Inf for |x| > 1
Pow(x, -Inf) = +0 for |x| > 1
Pow(x, +Inf) = +0 for |x| < 1
Pow(x, -Inf) = +Inf for |x| < 1
Pow(+Inf, y) = +Inf for y > 0
Pow(+Inf, y) = +0 for y < 0
Pow(-Inf, y) = Pow(-0, -y)
Pow(x, y) = NaN for finite x < 0 and finite non-integer y
1c := math.Pow(2, 3)
2fmt.Printf("%.1f", c)
Output
8.0
func Pow10
1func Pow10(n int) float64
Pow10 returns 10**n, the base-10 exponential of n.
Special cases are:
Pow10(n) = 0 for n < -323
Pow10(n) = +Inf for n > 308
1c := math.Pow10(2)
2fmt.Printf("%.1f", c)
Output
100.0
func Remainder
1func Remainder(x, y float64) float64
Remainder returns the IEEE 754 floating-point remainder of x/y.
Special cases are:
Remainder(±Inf, y) = NaN
Remainder(NaN, y) = NaN
Remainder(x, 0) = NaN
Remainder(x, ±Inf) = x
Remainder(x, NaN) = NaN
1fmt.Printf("%.1f", math.Remainder(100, 30))
Output
10.0
func Sin
1func Sin(x float64) float64
Sin returns the sine of the radian argument x.
Special cases are:
Sin(±0) = ±0
Sin(±Inf) = NaN
Sin(NaN) = NaN
1fmt.Printf("%.2f", math.Sin(math.Pi))
Output
0.00
func Sincos
1func Sincos(x float64) (sin, cos float64)
Sincos returns Sin(x), Cos(x).
Special cases are:
Sincos(±0) = ±0, 1
Sincos(±Inf) = NaN, NaN
Sincos(NaN) = NaN, NaN
1sin, cos := math.Sincos(0)
2fmt.Printf("%.2f, %.2f", sin, cos)
Output
0.00, 1.00
func Sinh
1func Sinh(x float64) float64
Sinh returns the hyperbolic sine of x.
Special cases are:
Sinh(±0) = ±0
Sinh(±Inf) = ±Inf
Sinh(NaN) = NaN
1fmt.Printf("%.2f", math.Sinh(0))
Output
0.00
func Sqrt
1func Sqrt(x float64) float64
Sqrt returns the square root of x.
Special cases are:
Sqrt(+Inf) = +Inf
Sqrt(±0) = ±0
Sqrt(x < 0) = NaN
Sqrt(NaN) = NaN
1const (
2 a = 3
3 b = 4
4)
5c := math.Sqrt(a*a + b*b)
6fmt.Printf("%.1f", c)
Output
5.0
func Tan
1func Tan(x float64) float64
Tan returns the tangent of the radian argument x.
Special cases are:
Tan(±0) = ±0
Tan(±Inf) = NaN
Tan(NaN) = NaN
1fmt.Printf("%.2f", math.Tan(0))
Output
0.00
func Tanh
1func Tanh(x float64) float64
Tanh returns the hyperbolic tangent of x.
Special cases are:
Tanh(±0) = ±0
Tanh(±Inf) = ±1
Tanh(NaN) = NaN
1fmt.Printf("%.2f", math.Tanh(0))
Output
0.00
func Trunc
1func Trunc(x float64) float64
Trunc returns the integer value of x.
Special cases are:
Trunc(±0) = ±0
Trunc(±Inf) = ±Inf
Trunc(NaN) = NaN
1fmt.Printf("%.2f\n", math.Trunc(math.Pi))
2fmt.Printf("%.2f\n", math.Trunc(-1.2345))
Output
3.00 -1.00
func Y0
1func Y0(x float64) float64
Y0 returns the order-zero Bessel function of the second kind.
Special cases are:
Y0(+Inf) = 0
Y0(0) = -Inf
Y0(x < 0) = NaN
Y0(NaN) = NaN
func Y1
1func Y1(x float64) float64
Y1 returns the order-one Bessel function of the second kind.
Special cases are:
Y1(+Inf) = 0
Y1(0) = -Inf
Y1(x < 0) = NaN
Y1(NaN) = NaN
func Yn
1func Yn(n int, x float64) float64
Yn returns the order-n Bessel function of the second kind.
Special cases are:
Yn(n, +Inf) = 0
Yn(n ≥ 0, 0) = -Inf
Yn(n < 0, 0) = +Inf if n is odd, -Inf if n is even
Yn(n, x < 0) = NaN
Yn(n, NaN) = NaN